Using Transformations to Graph Linear Functions

Students already know how to graph a line in slope intercept form. This lesson is designed to emphasize that just like with transformations in geometry, we can move and resize the graphs of functions.
Transformations can be a powerful understanding of what functions do. Function transformations are math operations that cause the shape of a function's graph to change (i.e if you change the function's equation, you change the shape of the graph).

Using Transformations to Graph Linear Functions
Warm Up (5 min)
- Graph $y=2 x-5$.
- Translate the function 2 places to the right and 7 units up.
- The function $y=2 x-5$ translated two places to the right and 7 units up becomes y
Students will be able to understand that you can move the graph of a linear function around the coordinate plane using transformations. There are three basic transformations: translation, reflection, and stretching. Teacher and students can further discuss what a translation is, reflection, stretch, etc.
Simulation Introduction (5-7 minutes)
- Distribute student activity sheet.

- Students will explore the simulation and write down observations/and or questions under \#1 on their activity sheet.
- Teacher will circulate the room and observe students.
- What does the purple dot represent? What happens when you move the blue dot?
- What does the equation look like when you make a horizontal line? Vertical line?
- How do you make a line steep? What do you notice about the slope?
- How do you make a line less steep? What do you notice about the slope?
- What can you do with the boxes with the question marks? What do they show?
- Ask students to briefly share what they wrote down for \#1 on the activity sheet and discuss any of the questions above.

Guided Exploration (15 minutes)

- Tell students to begin working on \#2. Observe students and encourage them to talk about the slope and y-intercept of the parent function.
- Tell students to work on \# \#3-8 in pairs.
- Circulate the room to be available for questions and ask probing/pushing questions, such as:
- How do you know by looking at the graph and equation if a vertical shift was applied to the parent?
- How can you tell by looking at the graph if the line gets more steep or less steep?
- How can you tell by looking at the equation if the line gets more steep or less steep?
- What is being transformed each time? (in this case, the parent function $y=x$)
- How can you tell if the transformation was a reflection?

If pairs finish early, students can create lines for their partner and have their partner guess what transformations were applied. For example, a student could have the line $y=-\frac{3}{4} x-2$. Their partner could ask questions like, was the line reflected? Did the line get more steep or less steep? Shift up or down?

Discussion and Summary (10 minutes)

- Facilitate a class discussion starting with \#7. Ask students how many lines they graphed. If students only graph one line, ask them if they could graph 2 lines. Why might we graph 2 lines? Show students that each line represents a transformation. Have students think and discuss: Do you have to graph the line $y=\frac{1}{2} x$ first and then shift it down 3? Or can you shift the parent function down 3 first and then use slope to go up one over two? Is there a pattern to the order and if so, what is that pattern similar to (order of operations)?
- Go over \#8. Discuss the vocabulary.

The graph gets less steep when the slope is between _0__ and __1_. This is called a vertical compression of the parent function. The graph gets more steep when the slope is _greater__ than 1. This is called a vertical stretch of the parent function. Reflections happen when the slope is ___ negative Vertical shifts happen when the y-intercept is not equal to \qquad 0 _.

- Consider the function $y=-\frac{3}{4} x-4$.
- What transformations are applied to the parent function?
- How does the negative in front of the slope affect the graph? How does a slope of $\frac{3}{4}$ transform the graph? What does the -4 do to the graph?
- Does knowing how \mathbf{m} and \mathbf{b} transform a graph change the way you would graph a line in slope intercept form?

Informal Assessment (5 minutes)

Exit Ticket:

A. Explain and demonstrate how to make transformations of linear functions in slope-intercept form. Include a basic explanation of how changing each part of the equation will change the graph as a whole.
B. Graph a line that is more steep and shifted down from the parent function.

Write your equation here: \qquad

