Name:

Date:

SPH3U Electricity Investigation – Series Circuits & Parallel Circuits

Part I – Series Circuits

Problem:

What are the electric potential and electric current relationships in series circuits?

Materials:

PhET DC Circuit Lab – HTML5 version

https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/

Procedure:

1. Set up the series circuit shown in the diagram. Points have been labelled for reference only and represent junction points in the circuit. [1]

- 2. Connect the positive terminal of the of the voltmeter to point **h**, and then touch the labelled points in turn, noting and recording the reading on the voltmeter in each case. Calculate, by subtraction $(V_b V_a = V_{ab})$, the potential difference across the power source and across each load and conductor. Remove the voltmeter from the circuit.
- **3.** Use the ammeter to measure the current through each conductor in the circuit. Record your results in Table 1.

Table 1 – Series Circuits [4]

Junction Point	Electric Potential (V)	Conductor	Potential Difference (V)	Electric Current (A)
а		ab		
b		bc		
с		cd		
d		de		
е		ef		
f		fg		
g				

Questions: (Answer in complete sentences.)

- 1. How many paths are there for an electron to take through the series circuit? [1]
- **2.** Calculate the sum of the decreases of the electric potential along the path, and the sum of the electric potential increases. State the relationship between the two. [4]

3. In a series circuit how does the total current from the power source compare with the current through each individual resistor? [1]

Part II – Parallel Circuits

Problem:

What are the electric potential and electric current relationships in parallel circuits?

Materials:

PhET DC Circuit Lab – HTML5 version

https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/

Procedure:

1. Set up the parallel circuit shown in the diagram, using the same notation for junction points [1]

- 2. In the same way as before, by connecting the positive terminal of a voltmeter to point **h** and then take readings of electric potential at each point, and then calculate by subtraction ($V_b V_a = V_{ab}$) the potential difference across the source and across each load and conductor.
- **3.** Use the ammeter to measure the current through each conductor in the circuit. Record your results in Table 2.

Table 2 – Parallel Circuits [4]

Junction Point	Electric Potential (V)	Conductor	Potential Difference (V)	Electric Current (A)
а		ab		
b		bc		
С		cd		
d		de		
е		ef		
f		fg		
g				

Questions: (Answer in complete sentences)

- How many different path are there for an electron to take through this parallel circuit?
 [1]
- Calculate the sum of the electric currents in the three branches of the circuit, and compare with the current leaving the source. State the relationship between the two.
 [4]

3. In a parallel circuit, how does the potential difference across the load compare with the potential difference across the power source? [1]