Phet Lab

Instructions:

- 1. Goto https://phet.colorado.edu/en/simulations/category/html
- 2. Select the HTML category, then the Forces and Motion Basics
- 3. Play with all aspects of the simulation to become familiar with the processes. (5 Minutes or so)

Part A: Net Force	(Qualitative	Answers:	No numbers)
-------------------	--------------	----------	------------	---

i.	Add a small (50.0 N) Red Force: What Happens to speed:
	What happens to net force:
ii.	Add a second small (50.0 N) Red Force : What Happens to speed:
	What happens to net force:
iii.	Add a small (50.0 N) Blue Force : What Happens to speed:
	What happens to net force:
Par	t B: Net Force (Quantitative Answers: numbers)
Pusl	n Pause Button Before Each Trial: Use a stopwatch: Turn on all values
Trial	1: Add a 50.0 N force [Right] on the 50.0 Kg mass. Time how long to reach 40.0 m/s. Time =
Dete	rmine acceleration using F _{net} = ma:
Dete	rmine acceleration using Kinematics. V ₂ = V ₁ + at:
Trial	2: Add a 100.0 N force [Right] on the 50.0 Kg mass. Time how long to reach 40.0 m/s. Time =
Dete	rmine acceleration using F _{net} = ma:
Dete	rmine acceleration using Kinematics. V ₂ = V ₁ + at:
Trial	3: Add a 150.0 N force [Right] on the 50.0 Kg mass. Time how long to reach 40.0 m/s. Time =
Dete	rmine acceleration using F _{net} = ma:
Dete	rmine acceleration using Kinematics. V ₂ = V ₁ + at:
Trial	4: Add a 200.0 N force [Right] on the 50.0 Kg mass. Time how long to reach 40.0 m/s. Time =
Dete	rmine acceleration using F _{net} = ma:
Dete	rmine acceleration using Kinematics. V ₂ = V ₁ + at:
(*By	now I hope you can see that we only need to calculate acceleration once, Maybe stop timing for now.)

Question #1: Sketch a graph of your data with FNet On the X axis, and acceleration on the Y axis My preference here is for you to use Google sheets.

Question #2: Repeat the activity with the same forces with 3 differing mass combinations of your choice. Place results in table below and sketch graphs on your existing graph.

Trial #	Mass =	Mass =	Mass =
1	a =,	a =,	a =,
	F _{Net} =	F _{Net} =	F _{Net} =
2	a =,	a =,	a =,
	F _{Net} =	F _{Net} =	F _{Net} =
3	a =,	a =,	a =,
	F _{Net} =	F _{Net} =	F _{Net} =
4	a =,	a =,	a =,
	F _{Net} =	F _{Net} =	F _{Net} =

Question #3.	Arialyze your	graphical result	is (Psst. iind	i siopes ii you ca	n) what are you houding	y.

Question #4: Determine the mass of the unknown.	
Other Commentary: (Hint: Newton's Second Law)	