ACTIVITY NO. 2: Reflection and Refraction of light

I. Objective: To verify laws of reflection and refraction of light.
II. Materials:

PhET Simulation on Resonance
Laptop
Activity sheet
Pen
III. Procedure:

1. Open the PhET Simulation on "Bending Light" distributed last week.
2. Click the tab "More Tools". Explore the sim and play around with its functionalities.

3. Activity proper:

PART I. Definitions

A. Turn on the light source. Refer to Figure 1 below and identify the rays based on the definitions below:

1. Incident ray - is the light ray coming directly from the source.
2. Reflected ray - is the light ray that bounces back to the $1^{\text {st }}$ material once it hits the boundary of the $2^{\text {nd }}$ material.
3. Refracted ray - is the light ray that passes through and bends towards the Normal line as it hits the $2^{\text {nd }}$ material.

Figure 1. Light rays

PART II. Law of Reflection

A. Place the center of the protractor at the intersection of the Normal line and boundary of the two materials.
B. Set material \#1 as air and material \#2 as water. Record the index of refraction of the two (2) materials below.

Table 1. Index of Refraction of different materials

Material	Name	Index of refraction (n)
1		
2		

C. Turn on the light source and move it so that the incident ray will have a reading of 30° from the Normal line.
D. Identify the angle of reflected ray from the Normal line and record it in Table \#2.
E. Now, move the light source to change the angle of incidence of your own choice. Record the angle of incident ray and reflected ray in Table \#2 along reading \#2.

Table 2. Angle of reflected ray

Readings	Angle of incident ray	Angle of reflected ray
1	30^{0}	
2		

F. Guide Question: From Table \#2, what do you notice about the angle of incident ray and angle of reflected ray from the two (2) readings? \qquad _.
G. Guided conclusion: The Law of Reflection states that the angle of incident ray is \qquad to the angle of the \qquad .

PART III. Law of Refraction (Snell's Law)

A. Place the center of the protractor at the intersection of the Normal line and boundary of the two materials.
B. Set material \#1 as air and material \#2 as water. Record the index of refraction of the two (2) materials below.

Table 3. Index of refraction of different materials

Material	Name	Index of refraction (n)
1		$n_{A}=\ldots$
2		$n_{B}=$

C. Turn on the light source and move it so that the incident ray will have a reading of 30° from the Normal line.
D. Identify the angle of refracted ray from the Normal line and record it in Table \#4.
E. Now, move the light source to change the angle of incidence of your own choice. Record the angle of incident ray and refracted ray in Table \#4 along reading \#2.

Table 4. Angle of refracted ray

Readings	Angle of incident ray	Angle of refracted ray
1	$\theta_{A}=30^{0}$	$\theta_{B}=$
2	$\theta_{B}=$	$\theta_{B}=$

F. From your results in Table 3, compute the inverse ratio of the indexes of refraction and record it on Table \#5 below.
G. From your results in Table \#4, compute the ratio of the sines of the angles θ_{A} and θ_{B} and record it on Table \#5 below.

Table 5. Ratio of indexes of refraction and sines of the angles θ_{A} and θ_{B}.

Readings	$\frac{n_{B}}{n_{A}}$	$\frac{\sin \theta_{A}}{\sin \theta_{B}}$
1		
2		

H. Guide Question: From your results in Table 5, what do you notice about inverse ratio of the indexes of refraction and ratio of the sines of the angles θ_{A} and θ_{B} ? \qquad _.
I. Guided Conclusion: Snell's Law states that inverse ratio of the indexes of refraction is \qquad to the ratio of the sines of the angles θ_{A} and θ_{B}.

