EXPANDING AND FACTORING ALGEBRAIC

 EXPRESSIONSAuthor: Amanda McGarry

PRE-PLANNING

LEARNING GOALS

- Use the distributive and commutative properties to make an equivalent expression
- Use a common factor to write an algebraic expression in factored form.

STANDARDS ADDRESSED

- CCSS.Math.Content.7.EE.A. 1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

- CCSS.Math.Content.7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

CURRICULUM ALIGNMENT

Digits Grade 7, Lesson 7-1 and 7-2

PRIOR KNOWLEDGE

- Write algebraic expressions to represent the information in a verbal expression.
- Use the commutative property to simplify expressions
- Use the distributive property to expand and combine like terms
- Identify the greatest common factor of two or more numbers

MATERIALS

- Technology: 2:1 or 1:1 laptop, chromebook, or iPad
- PhET sim: Area Model Algebra
- Activity sheets

LESSON PLAN (45 MINUTES)

WARM-UP

SIM-BASED LESSON

Have students work on \#2-4 on their activity sheet.
As you walk around observing students working on \#2-3, you can
help push their thinking with questions such as

- where does 6 x come from?
- where does 30 comes from?
- what does it mean when a number like 6 is multiplied outside
of parentheses?

SUMMARY

Name: \qquad Date: \qquad Class: \qquad

EXPANDING AND FACTORING EXPRESSIONS

1. Play with the Area Model sim for 5 minutes. Write down three questions or observations that you have.
2. Use the sim to explain why $6(15)=6(10)+6(5)$.

3. Use the sim to explain why $6(x-5)=6 x-30$.

4. Understanding an area model:
a. How do the interior numbers (partial products) get calculated?
b. How does total area get calculated? \qquad Commented [AM4]: Pause here for a whole-class discussion about area models. Call on students to share their answers for \#4: a) The outside numbers are being multiplied together to form the partial products, b) the product is the same as the total area, which is the sum of the partial products

Commented [Office1]: After 5 minutes, ask students to pause what they are doing on their laptops/tablets and share out what they found. You can model this on the projected sim or have students come up to show the class- whatever is easier.

Be sure to have students share how to add partition lines, edit numbers on the generic/algebra models, and access boards with different partitions.

Commented [AM2]: Optional: include this screenshot for scaffolding, or leave it out and encourage students to set up the model appropriately and draw here instead.

Commented [AM3]: As you walk around observing students working on \#2-3, you can help push their thinking with questions such as

- where does $6 x$ come from?
- where does -30 comes from?
- what does it mean when a number like 6 is multiplied outside of parentheses?
-

5. The Area Model sim is playing tricks on you! It gives you the interior numbers, but not the exterior numbers. What numbers must be on the outside of this area model?

6. Complete the table below without using the sim. Use the Variables screen to check your answers.

Factored form	Expanded form
$3(x+2)$	
$7(x+5)$	$2 x+12$
	$8 x+4$
$-2(2 x+4)$	
	$5 x-25$

7. For your birthday party, you plan to buy 2 cupcakes for each guest and 5 additional cupcakes to have as extras. Cupcakes cost $\$ 2.25$ each. Let x represent the number of guests you invite to your party. Use this factored expression: $2.25(2 x+5)$
a. What does each factor of the expression represent? What does the expression represent?
b. Use the distributive property to expand the expression. What does each term of your new expression represent?

Commented [AM5]: Encourage students to make predictions, then use the sim to verify. Look around to see if any students got different answers. Some example answers could be $4(x+3), 2(2 x+6), 1(4 x+12)$, and even negatives like $-4(-x-3)$. If students find the answer quickly, encourage them to find multiple correct solutions.

Commented [AM6]: Pause the class here to formally define expanded form and factored form.

