Pliet
 ADDING AND SUBTRACTING ALGEBRAIC EXPRESSIONS

Author: Amanda McGarry

PRE-PLANNING

LEARNING GOALS

- Use the Commutative, Associative, and Distributive Properties to add and subtract algebraic expressions
- Simplify algebraic expressions by combining like terms
- Define and use the vocabulary words term, constant, and coefficient
- Solve real-world problems involving algebraic expressions
- Rewrite a difference of expressions as a sum.

STANDARDS ADDRESSED

- CCSS.Math.Content.7.EE.A. 1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- CCSS.Math.Content.7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

CURRICULUM ALIGNMENT

Digits Grade 7, Lesson 7-3 and 7-4

PRIOR KNOWLEDGE

- Write algebraic expressions to represent the information in a verbal expression.
- Use the distributive property to expand an expression
- Use the commutative property to simplify an expression

MATERIALS

- Technology: 2:1 or 1:1 laptop, chromebook, or iPad
- PhET sim: Expression Exchange
- Activity sheet

LESSON PLAN (45 MINUTES)

WARM-UP

- Be sure students notice the toggle at the bottom of the screen:
- What does this toggle do?

- What does My Collection show?
- Can you change the value of the coins? Can you change the value of the variables? Why do you think you can change the value of a variable but not the value of a coin?

SIM-BASED LESSON

Instruct students to work on \#2-4 to focus on specific interactions in the sim relating to "overlapping" terms and expressions.

10 MINUTES

Facilitate a whole-class discussion where you bring students together to share responses to \#2-4. Call on students to share their responses, and ask for multiple students to share what they answered (even if answers are similar). Be sure to highlight important vocabulary that comes up during student share-out: term, coefficient, variable, constant, and expression.

Instruct students to work on \#5. Take note of partner discussions.
If students are stuck, ask the following pushing questions:

- Did you try building the expression?
- How can you take away those terms from the expression?
- Do you remember what those yellow and white buttons above an expression do? Try using the yellow break-apart button to break your expression down into all of the individual terms.

Facilitate a whole-class discussion.

- What mathematical operation is the same as "taking away"?
- How can we write this situation as a math problem? If we started with one expression and took away terms..
- $\left(3 x+2 y+5 x^{2}+8\right)-\left(2 x^{2}+x+5\right)$
- Which expression means the same thing?

○ $3 x+2 y+5 x^{2}+8-2 x^{2}+x+5$

- $3 x+2 y+5 x^{2}+8-2 x^{2}-x-5$

	- How do you know? Which one matches the action we took in the sim when trying to take away the terms?
- So when you are subtraction an expression, don't forget to	
subtract every term!	

SUMMARY

How are adding expressions and subtracting expressions similar?

Name: \qquad Date: \qquad Class: \qquad

ADDING AND SUBTRACTING EXPRESSIONS

Q = turn and talk. Stop and share your responses with your partner. If you have different responses, try to come to a consensus.

1. Play with the sim for 5 minutes. Write down three questions or observations that you have.
$2(4)+1(5)$

Explore
2. When you overlap two terms, sometimes the sim shows a yellow glow and sometimes you can't get a yellow glow.
a. What is happening when you see the yellow glow?
b. What is happening when you don't see a yellow glow?
3. When you overlap two expressions, what happens?
4. Build three different expressions (with 3-4 terms) and record them under Expression \#1. Copy your partners expressions under Expression \#2. Use the sim to add the two expressions and simplify so they have as few terms as possible.

Expression \#1	Expression \#2 (partners)	\#1 + \#2 (simplified!) Q

5. I built this expression in the sim: $3 x+2 y+5 x^{2}+8$
a. My partner borrowed my computer and took away $2 x^{2}, x$, and 5 ! What was left on my screen when I got my computer back?
b. How did you figure this out?
c. Could my partner have taken away $-x$? How would they do that, and what would the expression on the screen look like? \boldsymbol{Q}^{\mid}
6. Work on levels 7-8 in the game. Write down your results below:

APPLY WHAT YOU LEARNED!

Which expressions are equivalent to $-6+5 t$?
a. $(8 t+13)+-3 t+7$
b. $(6 t+3)-(t+9)$
c. $-3+6 t-3+t-2 t$
d. $(t+9)+(4 t-15)$
e. $5(-2+t)+4$
f. $2(t+5)-(3 t-4)$
g. $-1+(2 t+3)+2(t-3)$
h. $4 t-4(t+2)+(5 t+2)$

