DATA DETECTIVE

Author: Kelly Findley and Mary Burr

PRE-PLANNING

This set of lessons focuses on teaching students to model perfect linear relationships involving bivariate data with an equation and a graph, to use scatterplots and best fit lines to represent imperfect linear relationships, and to distinguish perfect vs. imperfect linear relationships. Students will learn to recognize different kinds of association. Students will also begin to evaluate model fit for imperfect linear relationships by considering how tight a fit is and the range of possible values for one variable given a known value for the other variable.

LEARNING GOALS

- Students will learn to recognize positive and negative association and reason about these ideas in terms of different real-world contexts
- Students will learn to recognize outliers and clustering
- Students will learn to evaluate whether a relationship is linear or nonlinear
- Students will learn to informally fit a line to bivariate data using only the scatterplot
- Students will learn to define the slope and intercept of the line of best fit and use that as a means of prediction
- Students will consider a range of possible values for one variable given a known value for the other variable and consider tightness and looseness of fit.

STANDARDS ADDRESSED

- MAFS.8.F.2.4: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
- MAFS.8.SP.1.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
- MAFS.8.SP.1.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
- MAFS.8.SP.1.3: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
- Standards of Mathematical Practice
- M1: Make sense of problems and persevere in solving them
- M3: Construct viable arguments and critique the reasoning of others
- M4: Model with mathematics
- Standards of Scientific Practice (we encourage teachers to also consider these practices when teaching statistics!)
- S4: Analyzing and interpreting data
- S7: Engaging in argument from evidence
- S8: Obtaining, evaluating, and communicating information

CURRICULUM ALIGNMENT

GoMath Grade 8, Modules 5.1-5.3 and 14.1-14.2
PRIOR KNOWLEDGE

- Familiarity with the equation of a line and Cartesian coordinate planes.
- Ability to calculate rate using distance and time.

MATERIALS

- Technology: 2:1 or 1:1 laptop, chromebook, or iPad
- PhET sim: Least-Squares Regression
- Activity sheet
- Florida GoMath: Pre-Algebra (or other curriculum/resources)

UNIT OUTLINE (5 DAYS)

LESSONS 5.1-5.2

Spend the first two days covering topics in lessons 5.1 and 5.2 from the GoMath PreAlgebra Book. The topics included are as follows:

- Writing the equation of a line (slope-intercept form) to model the relationship of two variables within a contextual situation.
- Writing the equation of a line from a graph
- Writing the equation of a line from a table of values.

1-2 One optional route for completing these goals are as follows:

- Complete the "Explore Activity" on p. 127
- Complete Example 1 on p. 128
- Complete Example 1 on p. 133
- Complete Example 2 on p. 134
- Also emphasize interpreting slope and intercept in context to the problems (e.g., For $\mathrm{y}=15+3 \mathrm{x}$, this means that Greta pays $\$ 15$ a month when she spends 0 hours using the equipment and pays an extra $\$ 3$ for each hour she uses the equipment)
(Note that students will continue to encounter these types of problems in the next lesson)

DAY 1

MINUTES	- Again, there are opportunities to use multiple methods, such as comparing the unit rates, judging from the graph, or judging straight from the table
	Facilitate class-wide discussion about Witness B's claims, and encourage students to engage in claim-evidence reasoning to write final conclusion on page 1. For example: I think Witness A is a reliable source because 25 degrees Celsius is the same as 77 degrees Fahrenheit. Witness B is not trustworthy because the thief would be farther away after 70 seconds than his house.
	Final Report Allow students remaining time to write out a data-based argument (claim and evidence) for the police department.

DAY 2

Comment [AM1]: This section could use some better alignment with the activity sheet... I've added in problem numbers where I think the lesson aligns, but if it's unclear for me it is likely to be unclear for teachers.

- OPTIONAL: On the student activity sheets, blank out the variables in \#8 and have students decide which axis each variable should be on.

After introducing the task, have students work in pairs on \#7-8, and move around the classroom to help groups who might feel confused. Do you think this will be a linear or nonlinear relationship? Perfect or imperfect relationship? Positive or negative association?

Have students switch screens with their partner and answer \#9 Have them primarily look for differences among the scenarios from the first page (linear or nonlinear, positive, negative, or no association, etc.)

- \#10: Have students fit their own line first, and optionally try the "best fit" line afterwards. Suggest to students that they have a roughly equal number of points below and above their lines, ignoring outliers. Students should write the equation of the line that appears in the sim.
- \#11: Students might need help to know that they should substitute 13 in for x in the equation. Share guiding statements like, "13 hours, is that a possible value for x or for y?"
- \#12: you might point students to the fact that the data does not all lie perfectly on the line, so we should also consider the range of possible "Rings stolen" values given 13 hours with no customers, not just our best singular estimate.

Complete the Final Report

Have a sample scatterplot ready to go to represent what the last 15 weeks could have looked like for the previous activity (suggestion of imperfect, linear, negative relationship). Don't fit a line initially.

DAY 3
Warm-up and warm-up discussion: teacher's discretion based on
what students might need. The scatterplot on p. 434 representing
eruptions of Old Faithful might provide for interesting context.
Possible path would be to display the scatterplot with context and
ask: "A) Is this a perfect or imperfect relationship? B) Is this a
positive or negative relationship? C) Are there any outliers in this
graph? D) If we looked only at interval times between 70 and 100
minutes, do you think there would be a strong linear association?"
What's interesting about this case is that there are two clusters of
data, and neither one by themselves really has an association
between the two variables.

Appendix for Teachers

What is a residual? A residual is the vertical distance from a data point to the best fit line. Every data point has a residual associated with it. The residual is negative when the data point is below the line of best fit, positive when it is above, and 0 when it is exactly on it.

What is the best fit line? The best fit line is the line that minimizes the total residual distance present. While we could place a number of lines on the scatterplot that could be a good fit for the data, only one line will be the best fit (minimizes the residual distance to the least possible value).

Why do we square residuals? Since some residuals are positive and some are negative, we need a way treat negative residuals the same as positive residuals. One option is to minimize the sum of residual absolute values. Another option is to minimize the sum of squared residuals. The reason we use squared residuals is a bit complicated: The short answer is that a sample will underestimate the presence of large residuals. When minimizing the sum of squared residuals, the larger residuals get more weight, thus creating a best fit line that is more responsive to higher residuals.

What is the correlation coefficient (\mathbf{r})? The correlation coefficient measures the strength of a linear relationship. When the linear relationship is tight, r will approach negative 1 or positive 1 , and when there is no linear relationship, r approaches 0 . Note that r can still be close to 0 when there are other relationships (like quadratic) in the data! A common misconception for students is that the correlation coefficient is stronger when the slope is steeper. However, a tight linear relationship with a barely positive (or negative) slope can still have a correlation coefficient around 1 or -1 . r does not reflect how steep the slope is.

