GENERATING EQUIVALENT EXPRESSIONS

PRE-PLANNING

LEARNING GOALS

- Identify equivalent expressions by evaluating for the same value of the variable
- Identify equivalent expressions using properties of operations
- Generate equivalent expressions using properties of operations
- Identify parts of an expression using mathematical terms; view one or more parts of an expression as a single entity; define: expression, coefficient, term, like terms

STANDARDS ADDRESSED

- CCSS.Math.Content.6.EE.A. 3 (Apply the properties of operations to generate equivalent expressions.)
- CCSS.Math.Content.6.EE.A.2.b (Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.)
- CCSS.Math.Content.6.EE.A. 4 (Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them).)

CURRICULUM ALIGNMENT

GoMath Grade 6, Lesson 10.3

PRIOR KNOWLEDGE

- Use a bar model or algebra tiles to represent variables and constants
- Evaluate expressions with a given value

MATERIALS

- Technology: 2:1 or 1:1 laptop, chromebook, or iPad
- PhET sim: Expression Exchange
- Activity sheet
- Exit tickets

LESSON PLAN (50 MINUTES)

WARM-UP

Have three different students write answers to \#1 on the board while others finish their work. Walk around to see what students are writing. When students are finished, call on a student to share their answer to \#2 who answered something along the lines of "A and C are equivalent because they both have the same coins they are just stacked differently."

MINI-LESSON: PROPERTIES OF ADDITION/MULTIPLICATION

```
Say: If you look at #1 in the warm-up, (a) and (b) both have the
same value, and (c) and (d) both have the same value. Why is
this?
8
MINUTES
We know that \(5(x+1)\) and \(5 x+5\) are equivalent because we can substitute any value for \(x\) and they equal the same value. We ALSO know they are equivalent because of the distribution property.
```


SIM-BASED LESSON

SUMMARY + EXIT TICKET

Name: \qquad Date: \qquad Class: \qquad

GENERATING EQUIVALENT EXPRESSIONS

Q = turn and talk. Stop and share your responses with your partner. If you have different responses, try to come to a consensus.

1 Play with the sim for 5 minutes. Write down three questions or observations that you have.

Commented [Office1]: After 5 minutes, ask students to pause what they are doing on their laptops/tablets and share out what they found. You can model this on the projected sim or have students come up to show the class- whatever is easier.

2 Check the "all coefficients" checkbox all coefficients and play with the sim. How would you describe a coefficient?

A coefficient is...

3 How do you change a coefficient?
$43 \bigcirc, z$, and $-2 x^{2}$ are all terms. Use the sim to build three more examples of terms and share them below. How would you describe a term?
1)
2)
3)

A term is...

5 When you overlap two terms, sometimes the sim shows a yellow glow. What is happening?

6 When you overlap two terms, sometimes you can't get a yellow glow. What is happening?

Commented [Office2]: When most students have answered \#6, pause and bring the class together for a chance to share responses to these questions. When you overlap and get a yellow glow, you must have two of the same type of term (e.g., $2 x$ and x become $3 x$) and the coefficient will increase. When you overlap and get a transparent box, you might have two of any types of terms and an expression is forming (e.g., $2 x+x$ or $2 x+y$).

7

8 Write an equivalent expression for each of the following and justify why they are equivalent by drawing algebra tiles, evaluating, or explaining:

Expression	Equivalent Expression	Justify why they are equivalent Ω
a. $7 x^{4}-5 x^{4}$		
b. $6 b+7 b-10$		
c. $-2(m+5)$		
d. $y+4+3(y+2)$		

9 Write two equivalent expressions to represent these algebra tiles:

10 Write an expression for the perimeter of this shape and simplify it.

11 Play the game! Be sure to try levels 7-8!

Commented [Office3]: When most students have answered \#7, pause and bring the class together for a chance to share responses to this question. You can use the edit button to go in to an expression and rearrange terms to be in any order, and can combine $x^{\wedge} 2$ and $-2 x^{\wedge} 2$ to get $-x^{\wedge} 2$.

Commented [KH5]: might want to suggest that students work on one or two of these, have a class discussion, and then work on the others. It can maybe be optional for the teacher, but struggling students might need a little more scaffolding before doing several on their own first.

Commented [Office4]: Remind students to compare answers with other students if they haven't already.

Commented [Office6]: This is an area for possible confusion because the units could be interpreted as variables. You may want to remind students that unit of measurement are not the same thing as variables in this case

Commented [Office7]: Remind students to compare answers with other students if they haven't already. If you notice any disagreements, step in to ask some probing questions before stating whether someone is correct or incorrect.

Name:	Name:
Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$	Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$
Name:	Name:
Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$	Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$
Name:	Name:
Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$	Simplify the following expression by combining like terms. $-3 m^{2}+2 m+5 m^{2}-4 m+7$

