Writing Linear Equations (Slope-Intercept and Point-Slope Form) Using "Graphing Lines" PhET Simulation

Designed for a 8th Grade-Algebra 1
(Could be used for 7th grade for Mastering/Extension of linear equations)

Pre-Planning:

Students will come into this lesson with prior knowledge of graphing linear equations from a set of ordered pairs; how to find and use slope of a line.

Materials:

- Each student will need a Chromebook to access https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html
- Student Handout for each student
- Optional - colored pencils

Learning Goals:

Students should be able to...

- Identify the slope, y-intercept and other points from a linear equation.
- Write equations of a line in either Slope-Intercept or Point-Slope Form.
- Graph linear equations using Slope-Intercept or Point-Slope Form.

Standards (from http://www.corestandards.org/Math/)

Equations for Linear Relationships.

CCSS.MATH.CONTENT.8.EE.B. 6
Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Curriculum Alignment

- Exploration of writing and graphing linear equations using Slope-Intercept and Point-Slope Form.
- Extends 7th Grade CMP3 book "Moving Straight Ahead".
- Extends 8th Grade CMP3 book "Thinking With Math Models".
- Reviews linear graphing in Algebra 1.

Writing Linear Equations (Slope-Intercept and Point-Slope Form)

 Using "Graphing Lines" PhET Simulation
Lesson Flow

Estimated Time: 50 minutes (1 class period)

	Teacher will...	Student will...
Warm-Up (Q1): (5 min)	- Direct students to Graphing Lines PhET Simulation. - Distribute Student Handout - As students are exploring "Graphing Lines" ask them: - What does the purple dot represent in the graph and the equation? - How is the blue dot helpful? What does it help you find? - Can the blue dot be to the left of the purple dot? What does it do? - What do the 2 grey boxes do for you? - Why is the equation on the line sometimes different than the equation in the box on the right?	- Explore PhEt simulation "Graphing Lines" using the "Slope Intercept" and "Point Slope" Tabs - Answer Question 1 on Student Handout with observations and questions.
Activity (Q2): (10-15 \min)	- Lead a short debrief of student's observations of simulation and answers to Question 2. - Ask students to share any observations about the simulation. - Pick students to share out their answers from Question 2. - Make sure that students understand that they must use two points on the graph to find the slope of the line. - Can you write a linear equation using only one point? Why or why not? - Can you move the purple off of the y-axis? - What happens to the slope when the blue dot is below the purple dot? - Why is the value for m in the two equations sometimes different? - Can you find other points on the line? - What did you use to find those other points? - Make sure that students are reducing their fractions for slope. - Why don't we use decimals for slope when graphing? - Lead debrief of how Slope-Intercept Form is a shortcut for graphing linear equations rather than making a table of values. - Do 1-2 class examples as a quick check in to make sure everyone understands. $y=2 / 3 x+1$ and $y=5-3 x$	- Use "Slope Intercept" Tab to complete Question 2 - Participate in class discussion
Activity (Q3): (10-15 $\min)$	- Support students in using PhET sim to answer Question 3. - Does it matter which point is used in the equation? - How did you calculate the slope from two points? - Does the blue dot move when moving the purple dot? - Does the purple dot move when moving the blue dot?	- Use the "Point Slope" Tab to complete Question 3 - Participate in class discussion

	- How does the slope change when moving the blue dot around? - Can you find other points on the line? - What did you use to find those other points? - Why/When would you use this instead of Slope-Intercept Form? - Lead debrief of strategies and answers to Question 3. - Do 1-2 class examples as a quick check in to make sure everyone understands. $y-2=3(x+1)$ and $y+1=-1 / 3(x-4)$ - Emphasize that the signs of $x 1$ and $y 1$ are the opposite of what they see in the equation. - Why is the sign opposite?	
Exit Ticket/ Summary (Q4): (20 min)	- Support students in playing the "Line Game". Reminding them of what different parts of the equations mean as necessary.	- Play the "Line Game" and record score on Student Handout.

