Linear Relationships Using "Graphing Lines - PhET Simulation"

Designed for a 7th Grade Math Academic Support Class - (55 Minutes)

Pre-Planning:

Students will come into this lesson with prior knowledge and exposure to rates. Most, and probably all, students will have seen these representations and concepts in a previous math class.

Materials:

- Each student will need a Chromebook to access
https://phet.colorado.edu/en/simulation/graphing-lines
- Student Handout for each student
- Exit Slip: Linear Relationships

Learning Goals:

Students should be able to...

- This problem introduces ways to represent linear relationships between two variables using tables, graphs, and equations. It is also the first time that students are asked to explain why a relationship is linear and to recognize a linear relationship from a table or an equation.
- How can you predict whether a relationship is linear from a table, a graph, or an equation that represents the relationship?
- Recognize problem situations that involve linear relationships
- Construct tables, graphs, and symbolic equations that represent linear relationships
- Connect equations that represent linear relationships to the patterns in tables and graphs of those equations

Develop understanding Linear Relationships

7.RP.A Analyze proportional relationships and use them to solve real-world and mathematical problems.
(7.RP.A.2, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c)
7.EE.B Solve real-life and mathematical problems using numerical and algebraic expressions and equations. (7.EE.B.4)

Standards: (from http://www.corestandards.org/Math/)

Curriculum Alignment

- Aimed at gap filling for middle school students in a math support class.
- Supports CMP3 books "Moving Straight Ahead" - Investigation 1.1

Teacher will...
Student will...

WARM UP \& INTRODUCTION

Warm-Up/ Part 1: (7 min)	- Direct students to Graphing Lines PhET Simulation. - Distribute Student Handout - Vocabulary: - Find keywords within the vocabulary - Constant Rate of Change - An object moving uniformly with respect to time - Linear Relationship - All points lie on a straight line - Lead a short debrief of student's observations of simulation and answers to Part 1. - What happens after you save a line? - What tool do you use to find a ordered pair? - What do each color coordinate represent?	- Fill in vocabulary - Explore PhEt simulation "Graphing Lines" - Fill Part 1. - Participate in class discussion.
GUIDED EXPLORATION		
Activity Part 2: (8 min)	- Introduce story and rate of change of each students and what each means. - What does "Rate" mean? - If the rate is a low number, what does that mean about their speed? - "Rate of Change" is how that quantity changes over time - Using the rate of change, have students complete the table. - Where should each student be at zero seconds? - After 10 seconds, who is the farthest?	- Use PhET sim to complete Part 2 - Have students discuss at their table what each rate means - Have students complete tables and compare their work with each other. - Participate in class discussion
Activity Part 3: (10 min)	- Support students in using PhET sim to answer Part 3. - Lead debrief of strategies and how to use the lines on an example problem: - 5 yards per second - $d=5 t$ - Provide students time to create the three graphs and share and compare - Which axis should represent time?	- Use PhET sim to complete Part 3 - Students will create lines for each student rollerblading. - Discuss and share lines in groups - Participate in class discussion

	- Which axis should represent distance? How do you know? - What does steepness mean? What does it look like on a graph?	
Activity Part 4: (5 min)	- Students will determine the rate of change in the table. - Students will then write an equation for each student. Let \boldsymbol{t} represent time and the \boldsymbol{d} represent distance traveled for each student. - Students will work on proportional vs non proportional table. - What makes something proportional? - What would be an example of a student rollerblading that would be non proportional?	- Discuss with partner(s) about similarities and differences of the rate of changes. - Students write down rate of changes - Student writes down equations - Discuss and share what students wrote down for rate of change and equations as a small group and compare - Then discuss as a class - Student will then complete proportional vs non proportional table. - What makes a table or graph proportional?
Activity Part 5: (5 min)	- New student (Diana) is added to the information, introduce her and the rate of change. Students will find the rate of change on the graph. - Introduce situation for Diana to be at the same rate as Jose - What would you change on the graph so that Diane and Jose are at the same rate? - Could Jose get a head start?	- Students will look at the graph and find Diana's rate of change. - Have students come up to the board and discuss how students found the information as a class. - Provide students time to have Diana's line be the same as Jose's line.
Activity Part 6: $(10 \mathrm{~min})$	- Introduce the yards traveled with different times - Provide an example for 10 seconds - Do you need to convert the minutes and hours to seconds? - How many yards would each student be at in 45 seconds? 50 minutes? 3 hours?	- Provide students time to convert yards for the given time.

SUMMARY

Summary: (5 min)	- Lead summary of activity - Rate of change - Steepness of a line - Questions to ask: - How does the constant travel rate show up in the table, the graph, and the equation? - For those situations, compare the rollerblading rates to those of the original three students. Who is the fastest? Who is the slowest? - Describe what is happening in each situation. - Describe the patterns of change between the two variables. - How does the pattern of change between two variables in a linear relationship show up in a table, graph, and an equation? Students should be able to determine a linear relationship. The students should be able to create a table, graph, and equation for each student.	- Participate in class summary

INFORMAL ASSESSMENT

LOOKING FORWARD

Students will begin to be introduced to independent and dependent variables. The word slope and y-intercept will be new terms. Students will begin to use each rollerblading rate as a way to raise money for a fundraiser.

