Distributive Property Review

Overview

Learning goal:

- Demonstrate the ability to use the distributive property with expressions accurately
- Levels of Mastery
- 5 (Advanced)- I can distribute and simplify expressions that are 1×3 or $2 x 2$ in length. I accurately combine like terms and pay attention to signs. I can teach this to someone.
- 4- I can distribute and simplify expressions that are 1×3 or $2 x 2$ in length. I accurately combine like terms and pay attention to signs. I know this but I am unsure if I can teach this at this point.
- 3 (Target)- I can distribute and simplify expressions that are 1×2 in length. I accurately combine combine like terms and pay attention to signs.
- 2-I can distribute and simplify expressions that are 1×2 in length. I can accurately combine like terms that have positive integers in them.
- 1 (Needs Help)- I do not understand how to use the distributive property yet.

Common Core Standards:

- CCSS.MATH.CONTENT.6.EE.A. 3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.

- CCSS.MATH.CONTENT.8.EE.C.7.B (taught as a review so this is approachable) Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Mathematical Practices

- 2) Reason abstractly and quantitatively
- 4) Model with mathematics
- 6) Attend to precision

Materials

- Computers for student use
- PhET simulation "Area Model Algebra"
- Distributive Property Activity Sheet

Estimated Time: Approximately 45-50 minutes	
Distributive Property Review	
Warm Up - 5 min max	Teacher notes:
Students will:	

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Students will review an elementary version of the distributive } \\
\text { property by seeing how the answers to these three questions are the } \\
\text { same, just done differently. }\end{array} & \begin{array}{l}\text { Warm Up can be skipped to } \\
\text { provide more time for } \\
\text { discussion at the end. The } \\
\text { explore activity provides much } \\
\text { of this front loading as well. }\end{array}
$$

- Multiply 4(12)

- Multiply 4(10 + 2)

Multiply 4(8 + 4)\end{array}\right]\)| Simulation Introduction - 5 minutes |
| :--- |

work correctly all the way down to the total area box below.	
Guided Exploration 15 minutes	
Teacher will:	Student will:
- Ask students to answer questions 4 through 6 in the activity. - Question 6 is meant more of an extension problem and if students do not get to this that is ok. Remember, the goal is to review the distributive property and not to introduce multiplying binomials. - Circulate around the room helping students see the partial products and how to show their work. - For struggling students during question 4 ask - When you multiply the two numbers what number should you expect to see in the partial product? - For students struggling with the product of 4 and x, If you have a group of 4 and they are students, what do you have? This applies to x's...if you have 4 x's what do you have? - For struggling students during question 5 ask: - What number goes into both of the coefficients of the total area? - Are there other numbers that could possibly work? - Have you tried negative options? - Question 6 (2×2 dimensions) - Students will need to see that in this example they will have to combine like terms.	- Complete questions $4-6$ on the activity sheet. - Complete the discussion questions. If time permitting, discuss your answers with a peer. - Play Levels 1-3 on the Area Model Algebra game. - Be able to explain why the 2×2 model requires additional steps to complete. - Ask clarifying questions.
Discussion and Summary 10 minutes	
Teacher will:	Student will:
- Facilitate discussions concerning: - If dimensions change why does the entire area not change? - Try drawing $5(x+2)=5 x+2$. What do you notice? What do you think happened? - What is the relationship between distributing and factoring? - What are common mistakes students make when distributing? Would using a 1×2 area model to help you distribute help alleviate this common mistake?	- Engage in the discussions referring back to their discussion answers. - Ask clarifying questions
Going Forward...	
- Teachers can refer students to the Area Algebra Model as they introduce students to solving equations requiring distribution.	

Student Activity Sheet

