Name:_	 	
Date:		

PHET Projectile Motion Simulation:

Today we will look at the relationship that launch angle plays with projectile motion.

In this experiment, we will change the angle of a cannon and see how it affects the distance a cannonball will travel.

<u>Procedure</u>

- 1. Open the link to the simulation posted in Edmodo. Click the "Play" button and then click on "Lab".
- 2. Use the data table to determine what angle the cannon should be placed.
- 3. After you fire the cannon ball, use the blue data box to measure the distance the canon ball flew.
 - a. Do this by lining the circle the left of the blue box up with the spot the cannonball landed.
 - b. Range = distance traveled
- 4. Record the distance the canon ball travels on the data table. Round to the nearest tenth place (ex .1)
- 5. Select a different projectile from the dropdown box on the right and repeat the above process.

Data Table:

Firing Angle	Distance in Meters	Distance in Meters
	(Cannonball)	(other projectile of choice)
25°		
30°		
45°		
60°		
75°		
90°		

- 1. What angle gave the most distance for the
 - a. Cannonball? _____
 - b. Other object? (Identify your projectile) ______
- 2. Which angle gave the least distance?
 - a. Cannonball? _____
 - b. Other projectile?_____
- 3. Write a complete sentence and explain how the launch angle impacts projectile distance.

Click the eraser button.

Set your launch angle to 75°.

The default velocity for your prior simulation was 18 m/s. Change the velocity as directed and complete the chart.

Velocity	Distance in Meters	Distance in Meters	
	(Cannonball)	(other projectile of choice)	
18 m/s			
10 m/s			
15 m/s			
20 m/s			
25 m/s			

4. Explain the role that velocity has with projectile motion.

Reset the velocity to 18 m/s and change the canon base height from 0m to 5 m.

5. Explain what happens when you change the height from which you launch a projectile?

Analysis: Write at least 3 sentences explaining in detail what factors affect the distance a projectile travels and how.