The Gravitational Constant Lab

So far this year, we've made a single, indirect measurement of " g ", the gravitational acceleration caused by the Earth: when we used scales to determine that $\mathrm{W}=\mathrm{mg}$ (weight = mass x acceleration of gravity). Soon, we'll do the same with pendulums.

But what causes gravity? Why is the acceleration of gravity for Earth --- or any other world - its own particular value?
In this lab, you'll use an on-line source to gather data about Newton's Law of Universal Gravitation: the "action-at-a-distance" force. The website, below, will show you how it works by allowing you to vary distances and masses, and then calculate its proportionality constant, "G" (CAPITAL G). We'll do it with a spreadsheet at first (Excel or Google Sheets, whichever works on your computer), but then we'll also try it with our calculators. (Not all TI-operating systems will give you a good value; that's why we're doing the spreadsheets, first.). You know that " g " $=-9.81 \mathrm{~m} / \mathrm{s}^{2}$ at Earth's surface. But that acceleration is due to the force of gravity acting on your mass. ($\mathrm{F}=\mathrm{ma}$)

The force of gravity between two normal-sized objects is much too small to measure even in most college laboratories, hence this is a good simulation. You will also practice scientific notation on your Tl's.

Procedure:

- Go to: http://phet.colorado.edu/sims/html/gravity-force-lab/latest/gravity-force-lab en.html
- Vary the masses and distance between the masses, and record all your data and the gravitational force to fill the table below and on your Excel/Google Sheets spreadsheet. Try it also on your TI at home. We'll talk about it in class later.
- The ruler is movable so you can get the distances more exactly. This will be your least accurate measurement. Make it as carefully as you can.
- Record the force in scientific notation, in 4 sig fig. (Note the forces are equal and opposite. So don't worry about "which value to record" - they're the same.) Scientific Notation will have the form: d.ddd $\mathbf{x} 10^{-\mathrm{ee}}$. (You can do that automatically on your calculator by setting the MODE to Sci 3.)
- Note that the larger the masses, the larger the force; the larger the distance between the masses, the smaller the force.
- If you're doing it by calculator: When you are done collecting your data in the table below, calculate " X ". If you've recorded your columns in LISTS in your calculator (L_{1}, L_{2}, L_{3}, and L_{4}, OR make new lists that are M_{1}, M_{2}, R, and F), then it will be easy (and a time saver!) to calculate the last column from the $1^{\text {st }}$ three columns USING the LISTS. Go back to your main screen and do that. Store the values in the X-list.

$\mathbf{M}_{\mathbf{1}}(\mathbf{k g})$	$\mathbf{M}_{\mathbf{2}}(\mathbf{k g})$	$\mathbf{R}(\mathbf{m})$	$X=\frac{M_{1} M_{2}}{R^{2}}$	$\mathbf{F}(\mathbf{N})$

| Get a Trendline (STATPLOT on your TI) of your data, F on the y -axis and X on the
 X-axis.
 (These are the same variables we'll use in an upcoming Spring Force lab.)
 What kind of regression will you use to find the relationship between F and X? |
| :--- | :--- | :--- |

