Go the Distance!

Name: \qquad

Learning Goals:

- Determine the distance between two points (hypotenuse of a right triangle) on a coordinate plane.
- Explain the relationship between the slope formula, Pythagorean Theorem, and distance formula.
- Create a formula for determining the distance between two ordered pairs (without a graph).

1. Explore the Graphing Lines simulation for a few minutes, graphing whatever points or lines you choose. Write down 1-3 observations you have about graphing lines.
2. Talk with a partner: How does this relate to the Pythagorean Theorem? Record your thoughts below.

We think this is similar to the Pythagorean Theorem because:

We think this is different than the Pythagorean Theorem because:
3. Draw a line to match the corresponding parts.

Pythagorean Theorem

Leg a
Leg b Hypotenuse c

Graphing Lines Simulation

line segment
run
rise
4. Graph any two points. Sketch a diagram (or insert a screenshot) of your graph, including the ordered pairs for your points below.
5. Calculate the length of the hypotenuse of the triangle formed in number 4, using what you know about the Pythagorean Theorem.
6. Rewrite the Pythagorean Theorem, substituting in the matched words above.

7. Rewrite the above formula, substituting in parts of the slope formula to help calculate the missing values for the legs. Since you cannot accurately count the length of the line segment, leave that as a variable.

8. What would you do to the left side of the equation above if you were trying to isolate the variable on the right (How do you get rid of the exponent?)? Hint: It's the last step when solving for the hypotenuse in the Pythagorean Theorem. Rewrite the formula with the variable isolated.
9. Using the formula you created in number 8, calculate the distance of the hypotenuse using the ordered pairs from \# 4.
10. Graph the ordered pairs $(6,4)$ and $(-4,1)$.
11. Using the formula you created in number 8, calculate the distance of the hypotenuse. (Check your work with the original Pythagorean Theorem, if necessary).
12. Using the formula you created in number 8 , calculate the distance between the ordered pairs $(15,11)$ and (20, 18).

