Clicker Questions for Molecule Shapes

AUTHORS:

Yuen-ying Carpenter (University of Colorado Boulder)
Robert Parson (University of Colorado Boulder)
Trish Loeblein (University of Colorado Boulder)

COURSE:

Introductory / Preparatory College Chemistry
COPYRIGHT: This work is licensed under a Creative Commons Attribution 4.0 International License.

What shape is water?

a. Tetrahedral
b. Bent
c. Trigonal planar
d. Linear

What is the electron pair geometry of NH_{3} ?

a. Linear
b. Trigonal Planar
c. Tetrahedral
d. Trigonal Pyramidal

N has 4 groups around it; thus, it is a tetrahedral electron pair geometry

Answer: C

Which of these molecules has a linear molecule geometry?

$$
\begin{array}{|ll|}
\hline \text { a. } & \mathrm{CO}_{2} \\
\hline \text { b. } & \mathrm{O}_{3} \\
\text { c. } & \text { Both } \\
\text { d. } & \text { Neither }
\end{array}
$$

O_{3} has 18 valence electrons:

$\ddot{0}=\ddot{0}-\ddot{0}:$

The bonding in ozone is best represented as a a blend of these two "resonance structures".

Which molecule could be represented with this diagram?

a. BH_{3}
b. CH_{4}
c. NH_{3}

What is the molecular geometry of $\mathrm{H}_{2} \mathrm{~S}$?
a. Linear
b. Tetrahedral
c. Trigonal pyramidal
d. Bent

What is the molecule geometry and bond angle for a molecule AX_{2} which has 3 lone pairs on the central atom?

Explain your reasoning.

In a system with 4 atoms and 1 lone pair, predict the position of the lone pair.

A. One of the A locations

B. One of the B locations

Explain your reasoning.

Which of these molecules would you expect to have different bond angles in the real world than are predicted by the model?

Explain your reasoning.

