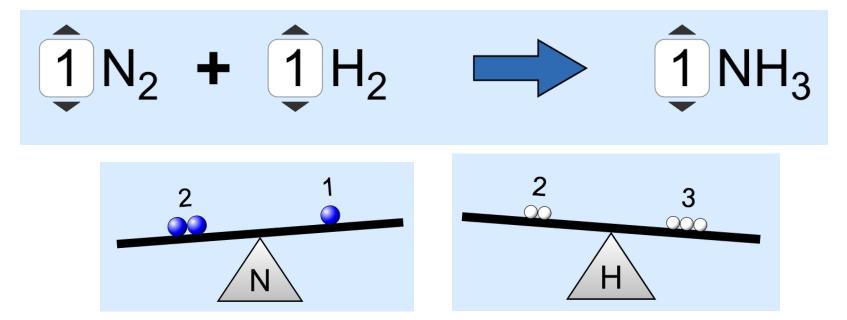


Clicker Questions for Balancing Chemical Equations

AUTHORS:

Yuen-ying Carpenter (University of Colorado Boulder)

Robert Parson (University of Colorado Boulder)


Trish Loeblein (University of Colorado Boulder)

COURSE:

Introductory / Preparatory College Chemistry

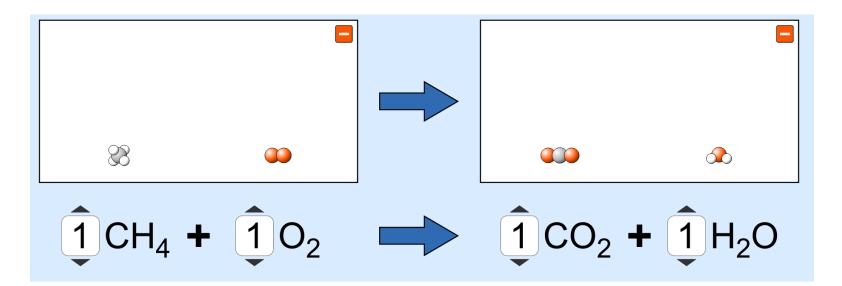
COPYRIGHT: This work is licensed under a <u>Creative Commons Attribution 4.0 International</u> <u>License</u>.

What would you do to balance this equation?

- a. Double the coefficient of N_2 (2 N_2)
- b. Multiply coefficient of H_2 by 3 (3 H_2)
- c. Multiply subscripts of H_2 by 3 (H_6)
- d. Double the subscripts for NH_3 (N_2H_6)

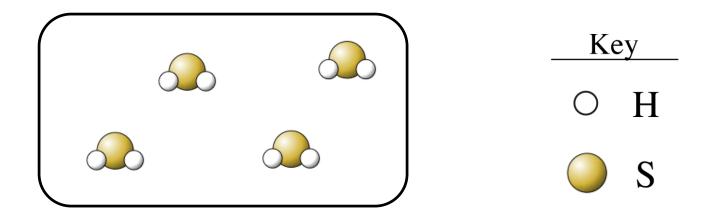
e. Double the coefficient of NH_3 (2 NH_3)

What was your first step in balancing this equation?


$SO_3 \longrightarrow SO_2 + O_2$

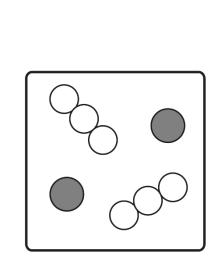
- a. Change the coefficient of SO₃
- b. Change the coefficient of SO₂
- c. Change the coefficient of O_2

Does not have a "correct" answer, but A is the most efficient way


What was your first step in balancing this equation?

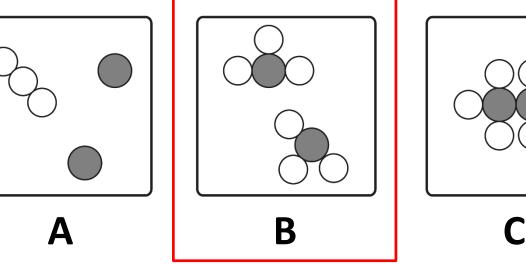
- a. Change the coefficient of CH₄
- b. Change the coefficient of O_2
- c. Change the coefficient of CO₂
- d. Change the coefficient of H_2O

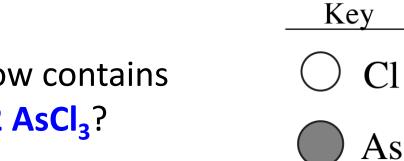
Does not have a "correct" answer – All choices will work, B and D are the most efficient

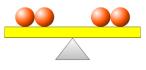


Which of these chemical formulas describes the contents of the box above?

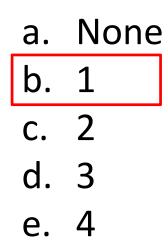
- a. 4 SH₂
- b. (SH₂)₄
- c. Both A and B
- d. Neither A nor B




Which of the boxes below contains a picture representing **2** AsCl₃?

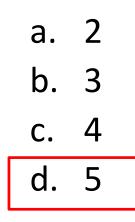


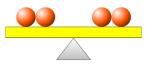
D



How many coefficients *need to be changed* to make this chemical equation balanced?

 $Zn(s) + HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + H_2(g)$


Balanced equation: $Zn(s) + 2 HNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + H_2(g)$



 $0 CO_2 + 0 H_2 O \implies 0 C_2 H_2 + 0 O_2$

After you balance this equation, what is the final coefficient in front of O_2 ?

 C_2H_2 +

0

2C2HZ

Balancing Chemical Equations

Unbalanced equation:

 $CO_{2} +$

 H_2O

Balancing in progress:

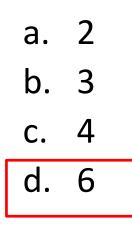
Notice that it is NORMAL that you'll revise your coefficients (possibly more than once) as you work towards a balanced equation, since changing one coefficient may affect an element that you previously balanced.

Balanced equation:

 $4 CO_2 + 2 H_2O \implies 2 C_2H_2 + 5 O_2$

"Level 3" – More challenging

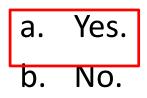
$\hat{\underline{0}}C_2H_6 + \hat{\underline{0}}O_2 \qquad \Longrightarrow \quad \hat{\underline{0}}CO_2 + \hat{\underline{0}}H_2O$


Press 'A' on your clicker when you think you have correctly balanced this equation.

"Level 3" – More challenging

$$\hat{\underline{0}}C_2H_6 + \hat{\underline{0}}O_2 \qquad \Longrightarrow \quad \hat{\underline{0}}CO_2 + \hat{\underline{0}}H_2O$$

What is the **coefficient of H₂O** in the balanced equation?



Starting from words

When white phosphorus (P_4) is exposed to oxygen gas (O_2) , it begins to burn, producing tetraphosphorus decaoxide.

Is this the *correctly balanced chemical equation* for this reaction?

$4P + 5O_2 \rightarrow P_4O_{10}$

c. Impossible to determine.

