Phys 12 -- Spring 2013 Simu-Lab 2: Masses and Spring

NAME____

PARTNER_

Objective: Study the elastic force (spring force) and verify the Hooke's Law

This is a "virtual lab". We will do an experiment by using simulation which can be found at the PhET simulations page: http:phet.colorado.edu

Find the simulation "Masses and Springs" and run it. You should see this:

Introduction:

- 1) Play the simulation for a while. Try to figure out what all those buttons do.
- 2) Drag the "friction" button to "lots".
- 3) Click and drag the vertical ruler anywhere you like, for convenience of measurement.(You can "zoom in" by right-clicking with the mouse. The ruler can be moved by left-clicking and drag)
- 4) Use spring 3 for the measurements.
- 5) Drag the "softness spring 3" to change softness.
- 6) Choose "earth" in the planet box
- 7) Choose mass 50g, 100g and 250g for
- 1) When you put a mass on the spring, and the mass eventually stays still, draw free body diagram.
- 2) When the mass is hanging on the spring and stay at rest, what is the relation between $|\mathbf{F}_{spring}|$ and $|\mathbf{F}_{gravity}|$?

3) Measure mass vs. stretched length and fill in the following table:

Mass (kg)	F _{gravity} (N)	F _{spring} (N)	Stretched length $\Delta x = x - x_0$ (m)	
			Spring 3: softness = 4	Spring 3: softness = 7
0.0500kg				
0.100 kg				
0.250 kg				

4) Make a graph of the F_{spring} vs. stretched length ($\Delta x = x - x_0$; F_s vs. Δx). Is the curve linear? Write the relationship between F_s and Δx into an equation. Describe how to determine the spring constant k by the graph, for both cases. (on the surface of the earth, $g = 9.80 \text{ m/s}^2$)

5) Summarize the method you used for finding the spring constant of a spring, step by step.

- 6) Using your results above, determine the masses of the three colored unknown objects. Explain the procedure step by step, including the measurement and calculation.
- 7) Discuss question: are you able to find the gravitational acceleration on an unknown planet X by using the data and results above? Explain your method step by step.

Conclusion: Hooke's Law is	, where Δx , k and F _s are	$_$; F_s and
Δx has (linear / nonlinear) relationship.		