<u>Resonance</u>

#### **Clicker questions** by Trish Loeblein and Mike Dubson

#### Learning Goals: Students will be able to:

- 1. Describe what resonance means for a simple system of a mass on a spring.
- 2. Identify, through experimentation, cause and effect relationships that affect natural resonance of these systems.
- 3. Give examples of real-world systems to which the understanding of resonance should be applied and explain why. (not addressed in CQs)

## 1. Which system will have the lower resonant frequency?

| e the<br>y?                 |     |     |
|-----------------------------|-----|-----|
| Mass<br>(kg)                | 2.5 | 5.0 |
| Spring<br>constant<br>(N/m) | 100 | 100 |

### A) 1 B) 2 C) Same frequency

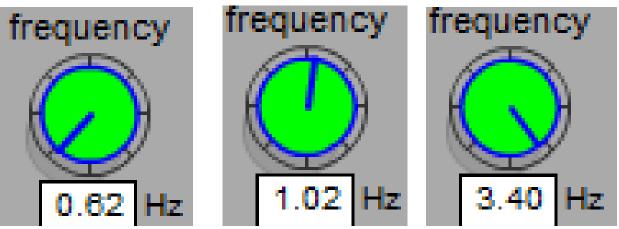
## 2. Which system will have the lower resonany frequency?

| e the<br>;y?                |     |     |
|-----------------------------|-----|-----|
| Mass<br>(kg)                | 5.0 | 5.0 |
| Spring<br>constant<br>(N/m) | 200 | 100 |

### A) 1 B) 2 C) Same frequency.

## 3. Which system will have the lower resonance frequency?

| icy?                        | NNNN |     |
|-----------------------------|------|-----|
| Mass (kg)                   | 3.0  | 3.0 |
| Spring<br>constant<br>(N/m) | 400  | 400 |
| Driver<br>Amplitude<br>(cm) | 0.5  | 1.5 |


#### A) 1 B) 2 C) Same frequency.

## 4. Which best describes how the motion of the masses vary?

- A. Less driver amplitude results in greater max height & faster oscillation
- B. More driver amplitude results in greater max height & faster oscillation
- C. Less driver amplitude results in greater max height
  D. More driver amplitude results in greater max height

| now<br>s vary?              |     |     |
|-----------------------------|-----|-----|
| Mass (kg)                   | 3.0 | 3.0 |
| Spring<br>constant<br>(N/m) | 400 | 400 |
| Driver<br>Amplitude<br>(cm) | 0.5 | 1.5 |

# 4. If the frequency f of the driver is not the same as the resonant frequency, which statement is most accurate?





The steady-state amplitude is ..

- a) smallest at the highest driver f.
- b) largest at the highest driver f.
- c) is largest at driver f nearest the resonant frequency.
- d) is independent of driver f.