Mechanical Energy Explorations with <u>Energy Skatepark</u> Author: Jackie Esler

?

Aution. Jackie Esiei	ē <u>N</u>
Student guide:	Name:
Start: Google	Phet Energy Skate Park
1. Click on the	first link
2. Click on the	Run Now! button.
3. Exp	lore the simulation with your partner and complete the following checklist:
	Move the blue dots on the track and run the skater.
	Try out different locations. [•] Earth [•] Jupiter
	Try different skaters. Choose Skater
	Try the different energy graphs.
	Add friction to a track.
Time to exp	olore potential energy, kinetic energy and conservation of energy.

- 4. Reset the simulation. Then make your screen look like the picture by
 - clicking to open the <u>bar graph</u>
 - dragging the graph closer to the track.
 - ask if you need help
 - a. Discuss the changes in the bar graph as the skater moves on the track

Mechanical Energy Explorations with <u>Energy Skatepark</u> Author: Jackie Esler

b. Use the symbols to fill in the data table:

(\uparrow increases, \downarrow decreases, S for stays the same)

Skater's	Potential	Kinetic	Total energy	
movement	energy	energy	$(\uparrow \downarrow c)$	
	(↑↓ऽ)	(↓↑ѕ)	(+ + 5)	
Down the hill				
Up the hill				

🖤 Discuss any patterns you see for the energy data table.

5. Change the skater and repeat #4.

6. Add symbols ($\downarrow \uparrow S$) to complete the observation statements:

As an object moves **down the track**, the kinetic energy ______ and the potential energy ______. When the object moves **up the track** the kinetic energy ______ and the potential energy ______.

7. Look at your data table and focus on the **Total energy** column. Write a statement or two about the "total energy" of the object moving up and down the track.

Mechanical Energy Explorations with <u>Energy Skatepark</u> Author: Jackie Esler

Name_____

Time to explore friction!

- 1. Reset the simulation.
 - a) Open the bar graph again
 - b) Click Track Friction.
 - c) Move the slider to change the friction

 \mathbb{P} Discuss the changes in the bar graph as the skater moves up and down on the track.

2. Use the symbols to fill in the data table.

```
(\uparrow increases, \downarrow decreases, S stays the same)
```

Skater's movement	Potential energy (↑↓5)	Kinetic energy (↓↑5)	Total energy (↑↓S)	(↑↓ s)
Down hill				
Up the hill				

Discuss any patterns you see in the data table.

3. Change the skater and repeat this part of the activity.

 \checkmark Add arrows the complete the following observations. ($\uparrow\downarrow$ S)

- As an object moves down the track, the kinetic energy _____ and the potential

energy _____. The total energy _____.

- After watching the bar graph while the object <u>is moving</u>, especially with "lots" of friction, write a title for the last column. Use the symbols to fill in the last column.

-complete the observation statement:

As the skater moves with friction, the kinetic energy and potential energy both _____,

the thermal energy_____ and the total energy _____.

Write a possible explanation for this.

- Discuss what changed and what stayed the same when friction added to the skate park .

- Which situation, with friction or without friction, is more similar to your everyday experience on a skateboard or bicycle? Write at least 2 sentences to explain your answer.