Reactants, Products, and Leftovers

Activity 2: Limiting Reactants in Chemical reactions

by Trish Loeblein http://phet.colorado.edu (assuming complete reactions)

Learning Goals: Students will be able to:

- Predict the amounts of products and leftovers after reaction using the concept of limiting reactant
- Predict the initial amounts of reactants given the amount of products and leftovers using the concept of limiting reactant
- Translate from symbolic (chemical formula) to molecular (pictorial) representations of matter
- Explain how subscripts and coefficients are used to solve limiting reactant problems.

1. A mixture of 4 moles of H_{2} and 3 moles of O_{2} reacts to make water. Identify: limiting reactant, excess reactant, and how much is unreacted.

Limiting Excess

reactant reactant
$\begin{array}{lll}\text { A. } & \mathrm{H}_{2} & 1 \text { mole } \mathrm{H}_{2} \\ \text { B. } & \mathrm{H}_{2} & 1 \text { mole } \mathrm{O}_{2} \\ \text { C. } \mathrm{O}_{2} & 1 \text { mole } \mathrm{H}_{2} \\ \text { D. } & \mathrm{O}_{2} & 1 \text { mole } \mathrm{O}_{2}\end{array}$
E. No reaction occurs since the equation does not balance with 4 mole H_{2} and $3{\text { mole } \mathrm{O}_{2}}$
2. A mixture of 6 moles of H_{2} and $\mathbf{2}$ moles of O_{2} reacts to make water. How much water is made?
A. 6 moles water
B. 2 moles water
C. 3 moles water
D. 4 moles water
E. No reaction occurs since the equation does not balance with 6 mole H_{2} and 2 mole O_{2}
3. A mixture of 2.5 moles of Na and 1.8 moles of Cl_{2} reacts to make NaCl . Identify: limiting reactant, excess reactant, and how much is unreacted.

Limiting Excess

reactant reactant
A. Na
.7 mole Na
B. Na
. 7 mole Cl_{2}
C. Na
.55 mole Cl_{2}
D. Cl_{2}
. 7 mole Na
E. $\quad \mathrm{Cl}_{2}$
1 mole Na
4. A mixture of 2.5 moles of Na and 1.8 moles of Cl_{2} reacts to make NaCl . How much sodium chloride is made?
A. 2.5 moles NaCl
B. $\mathbf{1 . 8}$ moles NaCl
C. 0.7 moles NaCl
D. 0.55 moles NaCl
E. 1 mole Nacl

5. The reaction for combustion of methane is

$$
1 \mathrm{CH}_{4} \leftrightarrows 2 \mathrm{O}_{2} \rightarrow 1 \mathrm{CO}_{2} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}
$$

Given the shown amounts for each reactant, predict the amounts of products and leftovers after complete reaction.

5. What are the amounts after the reaction?

 Initial:$7 \mathrm{CH}_{4}$ and $\mathbf{3} \mathrm{O}_{2}$
$1 \mathrm{CH}_{4}$? $2 \mathrm{O}_{2} \longrightarrow 1 \mathrm{CO}_{2} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}$
After:
A. 6

1
1
2
B. 1

6
1
2
C. 1

0
6
12
D. 4
0

4
8
6. Given the shown amounts for the products and leftovers after a complete reaction, predict the initial reactants.

$4 \mathrm{NH}_{3}+7 \mathrm{O}_{2}$

 4
 N

6. What are the amounts before the reaction? After:
$5 \mathrm{NH}_{3}$
OO_{2}
$4 \mathrm{NO}_{2}$
$6 \mathrm{H}_{2} \mathrm{O}$

$4 \mathrm{NH}_{3} \leftrightarrows 7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2} \& 6 \mathrm{H}_{2} \mathrm{O}$

Before:
A. 4
B. 9

C. 102 7 -
D. 4

7. Given the shown amounts for the products and leftovers after a complete reaction, predict the initial reactants.

$$
2 \mathrm{C}_{2} \mathrm{H}_{2} \leftrightarrows 5 \mathrm{O}_{2} \Rightarrow 4 \mathrm{CO}_{2} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}
$$

7. What are the amounts before the reaction? After:
$8 \mathrm{C}_{2} \mathrm{H}_{2}$

CD
$4 \mathrm{CO}_{2}$
$2 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{C}_{2} \mathrm{H}_{2} \stackrel{\mathrm{O}_{2}}{\mathrm{r}} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Before:
A. 2
$10<0$
B. 12
$10<0$
C. 10

9

D. 8

4
8. A mixture of S atoms (\square) and O_{2} molecules (O) in a closed container is represented by the diagrams:

Which equation best describes this reaction?
A. $3 X+8 Y \rightarrow X_{3} Y_{8}$
B. $X_{3}+Y_{8} \rightarrow 3 X Y_{2}+2 Y$
C. $X+2 Y \rightarrow X Y_{2}$
D. $3 X+8 Y \rightarrow 3 X Y_{2}+2 Y$
E. $X_{3}+Y_{8} \rightarrow 3 X Y_{2}+Y_{2}$

From Lancaster/Perkins activity

9. An initial mixture of sulfur(\square) and oxygen((\bigcirc) is represented:

Using this equation: $2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$, what would the results look like?

$9 \longdiv { \text { Before: } \mathrm { S } \square \mathrm { O } _ { \mathbf { 2 } } \mathbf { O } }$

$2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

A

B

C
D

E

$2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

Which is the limiting reactant?
A. Sulfur
B. Oxygen
C. Neither they are both completely used

From Lancaster/Perkins activity

