Reactants, Products, and Leftovers Activity 2: Limiting Reactants in Chemical reactions by Trish Loeblein <u>http://phet.colorado.edu</u> (assuming complete reactions)

Learning Goals: Students will be able to:

- Predict the amounts of products and leftovers after reaction using the concept of limiting reactant
- Predict the initial amounts of reactants given the amount of products and leftovers using the concept of limiting reactant
- Translate from symbolic (chemical formula) to molecular (pictorial) representations of matter
- Explain how subscripts and coefficients are used to solve limiting reactant problems.

1. A mixture of 4 moles of H_2 and 3 moles of O_2 reacts to make water. Identify: limiting reactant, excess reactant, and how much is unreacted.

	Limiting	Excess	
	reactant	reactant	
Α.	H ₂	1 mole H ₂	
B.	H ₂	1 mole O ₂	
С.	02	1 mole H ₂	

- **D.** O_2 **1 mole O_2**
- E. No reaction occurs since the equation does not balance with 4 mole H₂ and 3 mole O₂

2. A mixture of 6 moles of H_2 and 2 moles of O_2 reacts to make water. How much water is made?

- A. 6 moles water
- B. 2 moles water
- C. 3 moles water
- D. 4 moles water
- E. No reaction occurs since the equation does not balance with 6 mole H₂ and 2 mole O₂

3. A mixture of 2.5 moles of Na and 1.8 moles of Cl₂ reacts to make NaCl. Identify: limiting reactant, excess reactant, and how much is unreacted.

Limiting Excess reactant reactant .7 mole Na A. Na $.7 \text{ mole Cl}_2$ B. Na C. Na .55 mole Cl₂ .7 mole Na D. Cl₂ E. Cl_2 1 mole Na

4. A mixture of 2.5 moles of Na and 1.8 moles of Cl_2 reacts to make NaCl. How much sodium chloride is made?

A. 2.5 moles NaCl B. 1.8 moles NaCl C. 0.7 moles NaCl D. 0.55 moles NaCl E. 1 mole Nacl

5. The reaction for combustion of methane is

 $1 \text{ CH}_4 + 2 \text{ O}_2 \rightarrow 1 \text{ CO}_2 + 2 \text{ H}_2 \text{ O}_2$

Given the shown amounts for each reactant, predict the amounts of products and leftovers after complete reaction. 5. What are the amounts after the reaction? Initial:

7 CH_4 and 3 O_2					
1 CH ₄	₽ 2 0 ₂ =	→ 1 CO ₂	► 2 H ₂ O		
After: A.6	1	1	2		
B.1	6	1	2		
C. 1	0	6	12		
D.4	0	4	8		

6. Given the shown amounts for the products and leftovers after a complete reaction, predict the initial reactants. 4 NH₃ ♣ 7 O₂ ➡ 4 NO₂ ♣ 6 H₂O

6. What are the amounts before the reaction?

7. Given the shown amounts for the products and leftovers after a complete reaction, predict the initial reactants.

$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$

7. What are the amounts before the reaction?

Before: 10 A. 2 10 B. 12 10 C. 10 9 D. 8 4

8. A mixture of S atoms (\blacksquare) and O₂ molecules (\blacksquare) in a closed container is represented by the diagrams:

Which equation best describes this reaction?

- A. $3X + 8Y \rightarrow X_3Y_8$
- B. $X_3 + Y_8 \rightarrow 3XY_2 + 2Y$
- C. $X + 2Y \rightarrow XY_2$
- D. $3X + 8Y \rightarrow 3XY_2 + 2Y$
- E. $X_3 + Y_8 \rightarrow 3XY_2 + Y_2$

9. An initial mixture of sulfur() and oxygen() is represented:

Using this equation: $2S + 3O_2 \rightarrow 2SO_3$, what would the results look like?

A B C D E

Which is the limiting reactant?

- A. Sulfur
- B. Oxygen
- C. Neither they are both completely used