Physics	I	Name				
Energy Simulation]	Date	per grp			
Prelab						
1. Energy of position is called						
2. Energy of movement is called						
 Friction in moving parts causes Simulation 	and wastes	and wastes				
. Open phet.colorado.edu Click on Pla	y with Sims ,Work Energy a	nd Power,	Energy skate park			
Basic Setup						
2. What kind of energy does the skater have at the	highest point	lowest poi	int			
<u>More details</u>						
3. Click <i>pause</i> At the right click on Potential	Energy Reference					
Move the Potential Energy Reference	<i>line</i> up to the lowest point on	the ramp				
Click <i>Energy graphs</i> Bar Graph <u>move graph to</u>	<u>) far left</u>					
Click Return Skater and Resume -	Watch the bar graph					
1 The graph shows that as DE goes down. KE go	and the TOTAI	ENERGV ic				
Add Friction	, and the TOTAL	LIVEROT IS_				
Click nauge – Pottom Dight click on – Treak F	viction and coroll down to fin	d the Caeffie	iant of Existion control			
Change it from NONE to the no	and sciolidown to in	u inc coejju	tent of Priction Control.			
Click Between Shoton and recommend	Vetek the her such					
Click Return Skater and resume - V	Watch the bar graph					
6. Is the Total Energy still constant ?	What else is happening ?					
7. Click <i>Pause</i> On graph click clear heat	Click Return Skater and	the <i>resume</i>				
- Watch the bar graph while counting eac	h time the skater passes the low	point.				
8. <i>Pause</i> when the skater gets to the low point fo	or the 10th time. He has lost ap	prox.	% of his energy.			
Where has it gone ?						
Investigate Gravity						
Click Reset Find <i>Location</i> at the middle right	t Current location is	chanc	re to Moon			
Observe (bring back sketer if passagery)						
Change locations to complete the table	Location	Gravity	Skatar speed			
(just judge the <u>relative</u> speed)	Eoeth	Olavity	Skaler speed			
10. What units are used for gravity ?						
This is the same as	Moon					
	Jupiter					
Investigate Mass						
11. Click Reset (back to earth!) Find <i>Choose</i> s	skater at the top right					
Observe Bug bulldog and Phet skate	\mathbf{r} . Does the speed seem to cha	ange ?				
WA 0						
Why ?						

12. The speed of an object at the bottom of a ramp (does) (does not) depend on it's mass

Investigate Joules

13. **RESET** Potential Energy reference and Show grid

Adjust the bottom of the track and the PE = 0 line to 1 m on the grid

At the lower right Click edit skater and change his mass to 100 kg

14. Calculate the PE of a 100 kg skater at height of 4 m above 0 level ______ Joules

15. Click on *Energy graphs* Energy vs Time

Move this graph to the top and adjust the main window if necessary to see the ramp

Return skater use REC (record) to make graphs. Stop. (Clear and repeat if necessary)

Use *rewind* and *Step* to record PE KE at various positions in the table below

	Point 1 about 4m	Point 2 about 2m	Point 3 about 2m	Point 4 about 4m
	level going DOWN	level going DOWN	level going UP	level going UP
Kinetic Energy				
Potential Energy				
Total Energy				

16. With the Energy graph still showing click choose skater and bug Return skater Resume

Enlarge the graph click on + What is the total energy of the bug?

Are the KE and PE of the bug acting the same as the skater's ?

17. The total energy of the bug is (the same as) (much less than) (much more than) the skater

Investigate Height

18. Click Pause RESET Click on Show grid

19. Adjust the ends of the track up to the 11 m level and the bottom down to 1 m

20. Carefully move the skater onto the top of the track . Click Resume and observe

21. How does the speed of the skater compare with the original track (Earth)

22. If the height of a ramp is increased the speed at the bottom will (increase) (decrease) (stay the same) **PE -> KE Practice Problems** (teacher will help!!) - use binder paper if needed

1.	Write the equations	PE at top $=$	K	E at bottom $=$			
2.	Total Energy is alway	/S	so PE a	at top =			
3.	Rewrite equations and	cancel mass					
4.	New equation for speed	d at bottom of ramp	v =				
5.	Calculate the following	g for a 75 kg skater	r, 5 m rar	np speed at bottom	on		
	a) Earth	t	b) Moon		c) Jupi	c) Jupiter	
6.	A 75 kg skater on Eart	th speed at bottom					
	a) 5 m ramp		b)	10 m ramp			
7.	Potential Energy at the	top of a 5 m ramp	a)	75 kg skater	b) 0.2 kg bug	c) 20 kg bulldog	