Energy Skate park 3

Pendulum height
2. A 5000 kg coaster is released 20 meters above the ground on a frictionless track.
What is the approximate speed at ground level? (pointsA) +
A. $7 \mathrm{~m} / \mathrm{s}-\mathrm{A}^{-}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $14 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$
E. none of the above
3. What is its approximate speed at 10 meters high (point B)?

A) $7 \mathrm{~m} /$
B) $10 \mathrm{~m} / \mathrm{s}$
C) $14 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$
E) none of the
above
4. How fast would the coaster have to be going at the start to reach 21 meters high (point C)?
A) $1.1 \mathrm{~m} / \mathrm{s}$ sto.t
B) $3.2 \mathrm{~m} / \mathrm{s}$
C) $4.5 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$

6. A block initially at rest is allowed to slide down a frictionless ramp and attains a speed v at the bottom. To achieve a speed $2 v$ at the bottom, how many times higher must the new ramp be?
$\sqrt{2}$
A)
B) $2 \quad$ C) 3
D) 4
$E)$ none of these.

CQ1 PE to KE from
Dubson/Tanner
6. A block initially at rest is allowed to slide down a frictionless ramp and attains a speed v at the bottom. To achieve a speed $2 v$ at the bottom, how many times higher must the new ramp be?
($\sqrt{2}$
$\begin{array}{llll}\text { A) } & \begin{array}{lll}\text { B) } 2 & \text { C) } 3 & \text { D) } 4\end{array} \quad \text { E) none of these. }\end{array}$

$$
\mathrm{mgh}_{\mathrm{top}}+\rho_{\mathrm{KE}}+0 \text { york }=0 \rho_{\mathrm{PEg}}+1 / 2 \mathrm{mv}_{\mathrm{bottom}}{ }^{2}
$$

First ramp: $\mathbf{h}_{\text {top }} \propto \mathbf{v}_{\text {bottom }}{ }^{2}$
2nd ramp: $\quad h^{\prime}{ }_{\text {top }} \propto\left(2 \mathrm{v}_{\text {bottom }}\right)^{2}=4\left(\mathrm{v}_{\text {bottom }}{ }^{2}\right)$

$$
h_{\text {top }}^{\prime}=4 h_{\text {top }}
$$

