Clicker questions for Projectile Motion

Trish Loeblein

June 08

Download the lesson plan and student directions for the lab <u>HERE</u>

There are some screen shots included to illustrate answers, but it would be better to use the simulation during discussion.

Learning Goals

- Predict how varying initial conditions effect a projectile path
- These are part of the lesson, but not addressed in the clicker questions:
- Use reasoning to explain the predictions.
- Explain projectile motion terms in their own words.
- Describe why using the simulation is a good method for studying projectiles.

1. Which car will go farther?

A

B

C They will go the same distance

2. Which will be in the air longer?

A

B

C same time in air

3. Which car will go higher?

A

B

C They will go the same height

Time for 75 degrees 3.6 s, 35 degrees 2.2

4. Which will go farther?

tankshell

angle(degrees) 75

initial speed(m/s) 18

B

mass(kg) 150

diameter(m) 0.15

Air Resistance

C They will go same distance

5. Which will go farther?

angle(degrees)	75	
initial speed(m/s)	18	
mass(kg)	150	
diameter(m)		
VAir Resistance		

B

C They will go same distance

6. Which will go higher?

tankshell

angle(degrees)	75
initial speed(m/s)	18
mass(kg)	150
diameter(m)	0.15
🖞 Air Resistance	

B

C They will go same height

7. Which will go farther?

B

C They will go same distance

Results 4-7 Small vs large object Red paths have air resistance

Without air resistance no difference

